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Introduction 
 
We have investigated Monte Carlo schemes for analyzing particle transport through 
media with exponentially varying time-dependent cross-sections. For such media, the 
cross-sections are represented in the form 

( ) e att 0
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or equivalently as 
( ) e bxx 0

−Σ = Σ           (2) 
where b=av and v is the particle speed. For the discussion below, the parameters a and b 
may be either positive, for exponentially decreasing cross-sections, or negative, for 
exponentially increasing cross-sections. For most time-dependent Monte Carlo 
applications, the time and spatial variation of the cross-section data are handled by means 
of a stepwise procedure, holding the cross-sections constant for each region over a small 
time interval t∆ , performing the Monte Carlo random walk over the interval t∆ , 
updating the cross-sections, and then repeating for a series of time intervals. 
Continuously varying spatial- or time-dependent cross-sections can be treated in a 
rigorous Monte Carlo fashion using delta-tracking [1], but inefficiencies may arise if the 
range of cross-section variation is large. In this summary, we present a new method for 
sampling collision distances directly for cross-sections which vary exponentially in space 
or time. The method is exact and efficient, and has direct application to Monte Carlo 
radiation transport methods. 
 
Derivation of the PDF for collision distance 
 
The Monte Carlo procedure of interest is the random sampling of a distance-to-collision, 
given that the region interaction cross-section varies as in Eq. (1) or (2). Other operations 
such as pathlength or collision tallies are relatively straightforward. For convenience, we 
will assume the cross-section behavior given by Eq. (2), with exponential variation along 
a flight path. For a particle starting a free-flight from position x=0, the probability of not 
colliding in a distance x is given by 
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In the limit of b! 0, Eq. (3) reduces to the standard transmission probability for constant 
cross-section, 0exp( )x−Σ .  Defining PC to be the probability of colliding in a finite 
distance of travel,  
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Then, the probability density function (PDF) for the collision distance s may be given as 
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The first term in Eq. (5) accounts for the possibility that the distance to collision may be 
infinite, that is, that no collision occurs in a finite distance. This can occur only for the 
case of an exponentially decreasing cross-section. The second term accounts for the 
possibility that a collision will occur after a free-flight of distance s. The constant c is 
simply the normalization factor for the collision probability and is determined below. 
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Note that the range of y is 0(0, / )bΣ  for b>0, and (0, )∞  for 0b ≤ . 
 
Then, 
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Random Sampling Procedure 
 
During Monte Carlo calculations, it is necessary to randomly sample the distance to 
collision from the PDF given by Eq. (5), that is, to solve the following equation for ŝ : 
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This may be done in a straightforward manner, using standard techniques for first discrete 
sampling to select whether or not a collision occurs, and then (if one did) to sample from 
either an exponential or a truncated exponential probability density [2]. The procedure is: 
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 For  b=0, 
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 For  b>0, 
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Numerical Results 
 
To verify that the PDF given by Eq. (5) is correct and that the random sampling 
procedure yields correct results, numerical experiments were performed using a 1-D 
Monte Carlo code. The physical problem consisted of a beam source impinging on a 
purely absorbing infinite slab, with a slab thickness of 1 cm and 0Σ = 1 cm-1. Monte Carlo 
calculations with 10,000 particles were run for a range of the exponential parameter b 
from –5  cm-1 to +20 cm-1. Two separate Monte Carlo calculations were run for each 
choice of b, a continuously varying case using the random sampling procedures described 
above, and a “conventional” case where the exponential variation in cross-section was 
described in a stepwise approximation using 250 separate regions of constant cross-
section. For each calculation, transmission through the outer boundary of the slab was 
tallied. The results shown in Figure (1) show nearly perfect agreement in transmission 
over the range of exponential parameters for the varying cross-section, verifying that the 
PDF and random sampling procedure described above are correct. 
 
Conclusions 
 
A PDF and random sampling procedure for the distance to collision were derived for the 
case of exponentially varying cross-sections. Numerical testing indicates that both are 
correct. This new sampling procedure has direct application in a new method for Monte 
Carlo radiation transport [3], and may be generally useful for analyzing physical 
problems where the material cross-sections change very rapidly in an exponential 
manner. 
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Figure 1. Transmission through a 1 mfp thick infinite slab as a function of  

cross-section decay parameter. Direct sampling from continuously  
varying cross-section compared with 250 regionwise cross-sections. 


